Mido - Master MASEF: 8 mars 2017

Examen: Machine Learning in Finance 1: Durée 2 heures

Quizz [10 points]

- Q1 : Que signifie « SVM »?
- a) Special Vector Matrix
- b) Support Vector Machine
- c) Symmetric Vector Module
- $\mathrm{Q2}:$ Si $(X_i,Y_i)_{i\in \llbracket 1,n\rrbracket}$ est un échantillon d'apprentissage comment est définie l'erreur de calibration pour un problème de classification où f est le classifica-
- a) $\frac{1}{n} \sum_{i=1}^{i=n} 1_{f(X_i) \neq Y_i}$ b) E[|f(X) Y|]
- c) aucun des choix proposés ci-dessus
- Q3 : Si $(X_i, Y_i)_{i \in [1,n]}$ est un échantillon d'apprentissage, parmi les hypothèses suivantes lesquelles font parties des hypothèses toujours faites dans le cours?
- a) les X_i sont gaussiennes
- b) les (X_i, Y_i) sont toutes de même loi
- c) les (X_i, Y_i) sont toutes indépendantes
- d) aucun des choix proposés ci-dessus
- Q4 : Si $R_n(f_n)$ est l'erreur de calibration pour le classificateur f_n associé à l'échantillon $(X_i, Y_i)_{i \in [1,n]}$ et si l'on note $R(f_n) = E[1_{f_n(X_{n+1}) \neq Y_{n+1}}]$ quelles propriétés sont vraies?
- a) $R_n(f_n) = R(f_n)$
- b) $R_n(f_n) > R(f_n)$
- c) $E[R_n(f_n)] \leq R(f_n)$
- d) aucun des choix proposés ci-dessus
- Q5 : Si il existe k points de \mathbf{R}^d qui peuvent être classifiés de toutes les façons possible par une famille de classificateurs \mathcal{F}_1 et pas par \mathcal{F}_2 alors parmi les propositions suivantes lesquelles sont forcémment vraies?
- a) $VC(\mathcal{F}_1) = k$
- b) $VC(\mathcal{F}_1) \geq k$
- c) $VC(\mathcal{F}_1) > VC(\mathcal{F}_2)$
- d) aucun des choix proposés ci-dessus
- Q6 : Si une famille de classificateurs est paramétrisée par p paramètres, parmi les assertions suivantes lesquelles sont vraies?
- a) nécessairement $VC(\mathcal{F}) < +\infty$
 - 1. Pierre Brugière Université Paris 9 Dauphine

- b) nécessairement $VC(\mathcal{F}) = p+1$
- c) aucun des choix proposés ci-dessus
- Q7 : L'inégalité de Vapnik Chervonenkis permet connaissant la complexité du modèle utilisé et l'erreur de calibration réalisée sur l'échantillon :
- a) de calculer la valeur exacte de $R(f_n)$
- b) de définir un intervalle de confiance pour $R(f_n)$
- c) de calculer $P(R(f_n) > R_n(f_n))$
- d) aucun des choix proposés ci-dessus
 - Q8: Quelles propositions sont vraies?
- a) une VC infinie pour une famille de classificateurs entraine obligatoirement une bonne qualité prédictive
- b) une VC infinie pour une famille de classificateurs entraine obligatoirement une calibration parfaite
- c) la VC d'une famille de classificateurs de \mathbf{R}^d est nécessairement infèrieure ou égale à d+1
- d) le nombre de façon de $\{0,1\}$ -classifier k points est de 2^k
- Q9 : Dans \mathbf{R}^d pour $w \neq 0$ on note $H_{w,b}$ l'hyperplan défini par $H_{w,b} = \{x \in \mathbb{R}^d \mid x \in \mathbb{R}^d$ \mathbf{R}^d , $\langle w, x \rangle + b = 0$. Quelles propositions sont vraies?
- a) $\forall x \in \mathbf{R}^d \ d(x, H_{w,b}) = \frac{|\langle w, x \rangle + b|^2}{\|w\|^2}$
- b) $\forall x \in \mathbf{R}^d \ d(x, H_{w,b}) = \frac{|\langle w, x \rangle + b|}{||w||}$ c) $\forall x \in \mathbf{R}^d \ d(x, H_{w,b}) = \frac{|\langle w, x \rangle b|}{||w||}$
- d) aucun des choix proposés ci-dessus
- Q10 : Dans \mathbf{R}^d pour $w \neq 0$ on note $H_{w,b}$ l'hyperplan défini par $H_{w,b} = \{x \in \mathbb{R}^d \mid x \in \mathbb{R}^$ \mathbf{R}^d , $\langle w, x \rangle + b = 0$. Quelles propositions sont vraies?
- a) $d(H_{w,b_1}, H_{w,b_2}) = \frac{|b_2+b_1|}{\|w\|}$ b) $d(H_{w,b_1}, H_{w,b_2}) = \frac{|b_2-b_1|}{\|w\|}$ c) $d(H_{-w,b_1}, H_{w,b_2}) = \frac{|b_2+b_1|}{\|w\|}$
- d) aucun des choix proposés ci-dessus
- Q11 : Si vous pouvez classifier parfaitement un échantillon à l'aide des hyperplans H_{w_1,b_1} avec une marge Δ_1 et H_{w_2,b_2} avec une marge Δ_2 vous avez une bonne raison de choisir l'hyperplan H_{w_1,b_1} plutôt que H_{w_2,b_2} si :
- a) $\Delta_1 < \Delta_2$
- b) $\Delta_1 > \Delta_2$
- c) $b_1 > b_2$
- d) $b_2 > b_1$
- Q12 : Si on peut classifier parfaitement un échantillon formé de deux classes à l'aide d'un hyperplan $H_{w,b}$ de marge Δ que dire des enveloppes convexes des

deux classes?

- a) elles sont séparables
- b) Δ est plus grand que la distance entre les deux enveloppes convexes
- c) certains points des enveloppes convexes sont sur les bords de l'hyperplan si il est de marge maximale
- d) aucun des choix proposés ci-dessus

Q13: Quelle majoration peut on utiliser pour la dimension de Vapnik de la famille ${\mathcal F}$ d'hyperplans de marges minimum Δ classifiant des points à l'intérieur de la boule de centre 0 et diamètre D de \mathbb{R}^d ?

- a) $VC(\mathcal{F}) \leq \min(d, \frac{\Delta}{D}) + 1$
- b) $VC(\mathcal{F}) \leq \min(d, (\frac{D}{\Delta})^2) + 1$ c) $VC(\mathcal{F}) \leq \min(d, (\frac{\Delta}{D})^2) + 1$
- d) $VC(\mathcal{F}) \leq \min(d, \tilde{D}\Delta) + 1$

Q14 : Le théorème du minimax assure que :

a)
$$\max_{z \in \mathcal{Z}} \left[\min_{y \in \mathcal{Y}} g(y, z) \right] \leq \min_{y \in \mathcal{Y}} \left[\max_{z \in \mathcal{Z}} g(y, z) \right]$$
b)
$$\min_{y \in \mathcal{Y}} \left[\max_{z \in \mathcal{Z}} g(y, z) \right] \leq \max_{z \in \mathcal{Z}} \left[\min_{y \in \mathcal{Y}} g(y, z) \right]$$
c)
$$\max_{z \in \mathcal{Z}} \left[\min_{y \in \mathcal{Y}} g(y, z) \right] = \min_{y \in \mathcal{Y}} \left[\max_{z \in \mathcal{Z}} g(y, z) \right]$$

d) aucun des choix proposés ci-dessus

Q15 : Quand on résoud par C-SVM une classification $\{-1,1\}$ quelles assertions sont vraies?

- a) d'après le théorème du minimax les solutions d^* du problème Dual et p^* du problème Primal vérifient nécessairement $d^* \leq p^*$
- b) le problème Primal et Dual ont la même solution uniquement si on rajoute les conditions de KKT dans l'écriture du problème Dual
- c) le problème Primal et Dual ont la même solution vue la nature particulière du problème
- d) les conditions de KKT sont automatiquement satisfaites vue la nature particulière du problème

Q16 : Quand on résoud avec un C-SVM une classification $\{-1,1\}$ quelles assertions sont vraies?

- a) tous les vecteurs supports sont toujours classifiés correctement
- b) tous les vecteurs supports sont toujours sur les bords de l'hyperplan solution
- c) l'hyperplan solution est orthogonal à une certaine combinaison linéaire des vecteurs x_i de l'échantillon

Q17 : Parmi les fonctions suivantes de $\mathbf{R}^d \times \mathbf{R}^d$ dans \mathbf{R} lesquelles sont des noyaux?

a)
$$exp(-\frac{\|x-y\|^2}{2}) + exp(-\frac{\|x-y\|^2}{4})$$

b)
$$< x, y > exp(-\frac{\|x-y\|^2}{2})$$

c) $exp(-\frac{\|x-y\|^2}{2}) - exp(-\frac{\|x-y\|^2}{4})$

On considère dans toute le suite du QCM le noyau $K_{\sigma}(x,y) = exp(-\frac{\|x-y\|^2}{2\sigma^2})$ de \mathbf{R}^n et ϕ_{σ} telle que : $\langle \phi_{\sigma}(x), \phi_{\sigma}(y) \rangle = exp(-\frac{\|x-y\|^2}{2\sigma^2})$

Q18: Quelles assertions sont vraies?

- a) $\forall x \in \mathbf{R}^n, \|\phi_{\sigma}(x)\| = 1$
- b) $\forall x, y \in \mathbf{R}^{n} \|\phi_{\sigma}(x) \phi_{\sigma}(y)\| > \sqrt{2}$ c) $\forall (x_{i})_{i \in [\![1,l]\!]} \in \mathbf{R}^{n} \exists w \in Vect\{\phi_{\sigma}(\mathbf{R}^{n})\}, \|w\| = 1 \text{ et } \forall i \in [\![1,l]\!], \langle \phi_{\sigma}(x_{i}), w \rangle \geq \frac{1}{n}$

Q19: Quelles assertions sont vraies?

- a) $\forall (x_i)_{i \in [\![1,l]\!]}$ la matrice $[K_\sigma(x_i,x_j)]_{i,j \in [\![1,l]\!]}$ est symmétrique
- b) $\forall (x_i)_{i \in [\![1,l]\!]}$ la matrice $[K_\sigma(x_i,x_j)]_{i,j \in [\![1,l]\!]}$ définie une forme quadratique po-
- c) $\forall x, y \in \mathbf{R}^n, \langle \phi_{\sigma}(x), \phi_{\sigma}(y) \rangle \geq \frac{1}{\sqrt{2}}$

Q20 : Les $(x_i)_{i \in [\![1,l]\!]}$ étant des points distincts de \mathbf{R}^n que dire de la fonction

$$f(x) = \lim_{\sigma \to 0} \sum_{i=1}^{i=l} K_{\sigma}(x_i, x)$$
?

- a) elle vaut zéro partout
- b) elle vaut 1 partout
- c) elle vaut 1 en chaque point x_i et zéro ailleurs

Problème:

On note ${\bf N}$ l'ensemble des entiers naturels et pour tout élément z de ${\bf R^N}$ on note $(z^j)_{j\in {\bf N}}$ ses composantes et $H=\{z\in {\bf R^N}, \sum\limits_{j\in {\bf N}}(z^j)^2<+\infty\}$

On note $\langle .,. \rangle$ le produit scalaire sur H défini par $\langle u,v \rangle = \sum_{i \in \mathbf{N}} u^j v^j$ et on note

 $\|.\|$ la norme associée, définie par $\|z\| = \sqrt{\langle z, z \rangle}$.

On note ξ le vecteur de \mathbf{R}^n de composantes $(\xi^i)_{i \in [\![1,n]\!]}$

Pour une famille finie de points $(z_i)_{i\in [\![1,n]\!]}$ de H on considère le problème :

$$(P_{\nu}) \begin{cases} \inf_{w \in \mathbf{R^{N}}, \rho \in \mathbf{R}, \xi \in \mathbf{R^{n}}} \frac{1}{2} \|w\|^{2} - 2\rho + \frac{\nu}{n} \sum_{i=1}^{i=n} \xi^{i} \\ \forall i \in [1, n], \langle w, z_{i} \rangle \geq \rho - \xi^{i} \\ \forall i \in [1, n], \xi^{i} \geq 0 \end{cases}$$
(C1)

 $[\mathbf{0.5pt}]$ 1) Ecrire le Lagrangien $L(w, \rho, \xi, \alpha, \beta)$ du système où $\alpha = (\alpha^i)_{i \in [1, n]}$ est associé aux n contraintes (C1) et $\beta = (\beta^i)_{i \in [1,n]}$ est associé aux n contraintes (C2)

 $[\mathbf{1pt}]$ 2) Calculer les dérivées $\frac{\partial L}{\partial w},\,\frac{\partial L}{\partial \rho},\,\frac{\partial L}{\partial \xi^i}$

 $\begin{array}{c} \left[\mathbf{0.5pt} \right] \ 3) \ \text{On note} \ w(\alpha,\beta), \ \rho(\alpha,\beta), \ \xi(\alpha,\beta) \ \text{les solutions (dependant de } \alpha \ \text{et} \\ \beta) \ \text{de} \ \frac{\partial L}{\partial w} = 0, \ \frac{\partial L}{\partial \rho} = 0, \ \frac{\partial L}{\partial \xi^i} = 0. \\ \text{Calculer l'expression de} \ L(w(\alpha,\beta),\rho(\alpha,\beta),\xi(\alpha,\beta),\alpha,\beta) \ \text{en fonction de } \alpha \ \text{et} \ \beta \\ \end{array}$

et des $(z_i)_{i\in [1,n]}$.

[1pt] 4) Montrez que le problème dual du problème (P_{ν}) est le problème (D_{ν}) défini par :

$$(D_{\nu}) \begin{cases} \sup_{\alpha \in \mathbf{R}^{n}} -\frac{1}{2} \sum_{i=1}^{i=n} \sum_{j=1}^{j=n} \alpha^{i} \alpha^{j} \langle z_{i}, z_{j} \rangle \\ \sum_{i=n}^{i=n} \alpha^{i} = 2 \\ \forall i \in [1, n], 0 \leq \alpha^{i} \leq \frac{\nu}{n} \end{cases}$$

On note $\alpha(\nu)$ la solution en α de (D_{ν}) quand ce problème a une solution (et dans ce cas on admet que le sup est atteint et en un point unique.

5)[1pt] a) Que se passe-t-il pour les solutions de (P_{ν}) et (D_{ν}) quand $\nu \longrightarrow 0$ et en dessous de quelle valeur ν_L de ν observe-t-on un phénomène "critique" ?

[1pt] b) Que se passe-t-il pour les solutions de (P_{ν}) et (D_{ν}) quand $\nu \longrightarrow +\infty$ et au dessus de quelle valeur ν_H de ν observe-t-on un phénomène "critique"? Que valent les solutions $\xi(\nu)$ de (P_{ν}) si $\nu > \nu_H$.

[1pt] c) On suppose ici $\nu_L < \nu < \nu_H$. Comment fait-on une fois les $\alpha(\nu)$ trouvés pour (D_{ν}) pour calculer l'argument $\rho(\nu)$ de (P_{ν}) (on suppose que l'inf est atteint et en un point unique)?

 $[\mathbf{0.5pt}]$ d) Pour quelle valeur de $\alpha_i(\nu)$ un vecteur z_i peut-il être un vecteur support mal classé pour le problème (P_{ν}) ?

On suppose maintenant que $\forall i \in [1, n], ||z_i|| = 1$ et on considère le problème :

$$(B_{\nu}) \begin{cases} \inf_{\substack{c \in \mathbf{R}^{\mathbf{N}}, R \in \mathbf{R}, \xi \in \mathbf{R}^{n} \\ \forall i \in [1, n], \|z_{i} - c\|^{2} \leq R^{2} + \xi^{i} \\ \forall i \in [1, n], \xi^{i} \geq 0 \end{cases}$$

[0.5pt] 6) Ecrire le Lagrangien $G(c, R, \xi, \alpha, \beta)$ du système (B_{ν})

[1pt] 7) Calculer les dérivées $\frac{\partial G}{\partial c}$, $\frac{\partial G}{\partial R}$, $\frac{\partial G}{\partial \mathcal{E}^i}$

[1.5pt] 8) Calculez le problème dual noté (C_{ν}) du problème (B_{ν})

[0.5pt] 9) Que remarquez-vous?